

Comprex®-Reinigung im Bereich Industrie

# Referenzprojekt

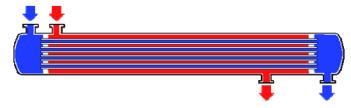



Abbildung 1: Prinzipskizze eines Rohrbündelwärmeübertragers [1]

# Rohrbündelwärmeübertrager Petrochemie

# Reinigung eines Rohrbündelwärmetauschers während des Betriebs

#### Aufgabenstellung

- Rohrbündelwärmeübertrager / -wärmetauscher in einem petrochemischen Prozess
- Anlagenstillstand kurzfristig nicht realisierbar
- starke Beeinträchtigung der thermischen Leistungsfähigkeit in Folge von Ablagerungen

#### **Technische Daten**

- Rohrbündelwärmeübertrager: Länge ca. 5.000 mm, Durchmesser ca. 1.000 mm
- Systemdruck Prozesswasser ca. 8,5 bar
- Online-Überwachung von Temperatur, Druck und Massenstrom

## Reinigen mit dem Comprex®-Verfahren

- Reinigung der Prozesswasserseite während des laufenden Betriebs
- Nutzung von Stickstoff als inertes Arbeitsgas für die Comprex<sup>®</sup>-Reinigung (Ex-Bereich)
- Prozessüberwachung während der Reinigung durch Anlagenbetreiber
- Anpassung der Reinigungsintensität entsprechend der Systemreaktion

# Prozesswasser Wärmeübertrager Stickstoff Comprex®Einheit

Abbildung 2: Reinigungsschema

## **Ergebnis**

Steigerung der Wärmeübertragungsleistung

Tabelle 1: Vergleich der Kenngrößen des Systems vor und nach der Comprex®-Reinigung (bei konst. Volumenstrom)

| Prozesswasser                  | vorher | nachher |
|--------------------------------|--------|---------|
| Eintrittstemperatur            | 94 °C  | 94 °C   |
| Austrittstemperatur            | 85 °C  | 81 °C   |
| Temperaturdifferenz $\Delta T$ | 9 K    | 13 K    |
| Wärmeübertragungsleistung      | 100%   | 144%    |
|                                |        |         |

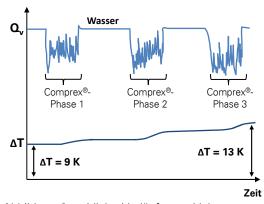



Abbildung 3: zeitliche Verläufe von Volumenstrom und Temperaturdifferenz des Prozesswassers während der Comprex®-Reinigung (schematisch)

## **Fazit**

Die Comprex®-Reinigung steigerte die Leistungsfähigkeit des Wärmeübertragers um 44 %. Der Zeitaufwand dafür betrug etwa 8 Stunden. Die höhere Wärmeübertragungsleistung ermöglicht, entweder die zeitliche Produktionsmenge zu steigern oder bei gleichbleibender Produktion den Energiebedarf zu senken.

[1] Bildnachweis: R. Castelnuovo, Wikimedia Commons, lizenziert unter CreativeCommons-Lizenz BY-SA 3.0, URL: http://creativecommons.org/licenses/by-sa/3.0/deed.d